
Abstract
The main structure aligner in the CCP4 Software Suite, 
SSM (Secondary Structure Matching) has a limited appli-
cability on the intermediate stages of the structure solution 
process, when the secondary structure cannot be reliably 
computed due to structural incompleteness or a fragment-
ed mainchain. In this study, we describe a new algorithm 
for the alignment and comparison of protein structures in 
CCP4, which was designed to overcome SSM's limitations 
but retain its quality and speed. The new algorithm, named 
GESAMT (General Efficient Structural Alignment of Mac-

romolecular Targets), employs the old idea of deriving the 
global structure similarity from a promising set of locally 
similar short fragments, but uses a few technical solutions 
that make it considerably faster. A comparative sensitivity 
and selectivity analysis revealed an unexpected significant 
improvement in the fold recognition properties of the new 
algorithm, which also makes it useful for applications in 
the structural bioinformatics domain. The new tool is in-
cluded in the CCP4 Software Suite starting from version 
6.3.
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Introduction

The comparison and structural alignment of protein struc-
tures has attracted the attention of researchers and soft-
ware developers for more than two decades. Over 50 dif-
ferent structure alignment algorithms have been designed 
(reviewed by Guerra & Istrali 2000), indicating that the 
problem is not yet solved in a commonly accepted man-
ner. This is largely due to the absence of a universal and 
robust measure of structural similarity (Yang & Honig 
2000), but also due to the high computational complex-
ity, which requires a careful choice of various approxima-
tions, with a different balance between achievable quality 
and computation time.
	 The choice of a particular structure alignment al-
gorithm is, in general, task-dependent. For example, the 
CCP4 Software Suite (Winn et al. 2011) includes several 
programs for structure comparison and the calculation 
of the best structure superposition: LSQKAB (Kabsch 
1976), POLYPOSE (Diamond 1992) and SUPERPOSE 
(also known as Secondary Structure Matching, SSM,  
Krissinel & Henrick 2004). In addition, the 3D struc-
ture alignment and superposition may be calculated with 
MOLREP, a program for molecular replacement (Vagin 

& Teplyakov 1997). These programs are not functionally 
equivalent to each other; e.g. LSQKAB is extremely fast 
and efficient but needs a manual input of matching atom 
pairs, POLYPOSE performs multiple superpositions of a 
large number of structures but assumes them to be of the 
same length, with one-to one correspondence between 
their atoms. The actual structure alignment in CCP4 (i.e. 
3D comparison based on the automatic computation of 
equivalent atom pairs) is done by SSM and MOLREP. 
SSM was recognized as the fastest and is considered to 
be a top-quality application in the field (Kolodny et al. 
2005). Originally, this algorithm was designed for fast 
3D searches in structural databases at the European Bio-
informatics Institute (EBI). For this purpose, certain 
limitations were adopted. For example, SSM can only be 
applied to structures that contain a minimum number of 
secondary structure elements. In addition, SSM may un-
derperform on fragmented chains and, in certain cases, 
it prunes search trees if speed is of essence. MOLREP is 
free from SSM limitations; however, structural alignment 
is not the main option for this application and comes as a 
by-product of a more general task. As a result, structural 
alignment in MOLREP is too slow for interactive appli-
cations and database searches.
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	 GESAMT was developed as an attempt to com-
plement the CCP4 Software Suite with a structure aligner 
that would be comparable to SSM by speed and qual-
ity, yet free of its limitations. The algorithm performs 
a fully automatic calculation of the correspondence be-
tween two ordered sets of 3D coordinates using SSM’s 
Q-score, which is equivalent to the identification of the 
largest common substructures, and performs the best su-
perposition of the aligned structures. The algorithm is 
applicable to chains with undefined secondary structure, 
as well as incomplete and fragmented (broken) chains. 
This makes GESAMT a more convenient algorithm than 
SSM for the intermediate stages of the structure solution 
process when, e.g., only an outline of a protein backbone 
is known. Sensitivity vs selectivity analysis of GESAMT 
showed that it achieves a considerably higher alignment 
quality than SSM. The analysis also revealed a consider-
able (5-10 times) enhancement of fold recognition rate, 
which was not initially expected. The latter makes GE-
SAMT a useful tool for various applications in structural 
bioinformatics, whenever an inference on structural simi-
larity or homology is required.

The algorithm

Fundamentally, GESAMT has many similarities to other 
approaches, such as Combinatorial Extension (CE, Shin-
dyalov & Bourne 1998) and FATCAT (Ye & Godzik 
2003). Protein backbones (represented by C-alpha atoms 
in this study) of the compared protein chains A and B, of 
length NA and NB, respectively, are split into sets of over-
lapping short fragments of length M, F A /B={ f i

A /B } , 
such that there are L A/B=N A /B−M+ 1  fragments in 
the corresponding sets. The optimal structure alignment 
of chains A and B may then be described as the iden-
tification of same-size subsets of non-overlapping frag-
ments F FA B A B

 / /⊂ , such that there is an unambiguous, 
one-to-one, correspondence between fragments f Fi

A
A∈    

and f Fi
B

B∈   that maximizes the chosen score function 
Q F FA B( , )  .
	 A straightforward approach to this problem in-
cludes the calculation of all LA× LB  short fragment 
superpositions (SFS) and the identification of the largest 
subsets of non-overlapping fragment pairs with close su-
perposition matrices Tij, such thatT f fij j

B
i
A

 ⋅ ≈ . The final 
solution is obtained by the appropriate “averaging” of su-
perposition matrices { }T Tij

 → 0  , chosen to maximize the 
score function Q. Consider GESAMT’s version of this 
scenario in more detail (Figure 1).
	 As was found empirically, pre-calculation of all 
L L L
AB A B= ×  SFSs with further clustering is consider-

ably (hundreds of times) slower than fusing these opera-

tions as in the following approach. At each time point, 
GESAMT keeps a list of clusters (that is initially empty). 
Each cluster contains the list of short fragments, the su-
perposition matrix TK (where K stands for cluster number) 
and the Q-score of the fragment superposition (see the 
definition of the Q-score in Krissinel & Henrick 2004).  
Each new fragment pair { , }f fi

A
i
B  is tested for suitability 

for each cluster, for which the pair is added to the cluster 
with the corresponding recalculation of TK and Q-score. 
If the new Q-score is not smaller than the previous one, 
the pair is left in the cluster. Note that, as a result of this 
procedure, a fragment pair may be included in more than 
one cluster. Note also, that a properly designed algorithm 
allows the incremental calculation of correlation matrices  
for individual clusters (cf. superposition matrix calcula-
tions from Krissinel & Henrick 2004), which makes the 
testing of fragment pairs as fast as the calculation of in-
dividual SFSs. If a fragment pair cannot be added to any 
existing cluster, a new cluster is generated. As observed, 
this algorithm results in a relatively small number of clus-
ters (typically around 0 01. ⋅ LAB ). If an excessive number 
of clusters is generated (over 0 1. ⋅ LAB ), the smallest clus-
ters that grow slower than their similar-sized equivalents, 
are abandoned.
	 Structural alignments, represented by the result-
ing clusters, are not optimal in most cases. This is be-
cause the fragment pairs { , }f fi

A
i
B  are added to clusters 

in the order of i,j -counting, and the fact that addition of 
one pair may result in the rejection of a whole branch of 
suitable pairs on later stages is completely ignored. This 
simplified approach was taken only because of perfor-
mance considerations. More specifically, trying all com-
binations of fragment pairs for each cluster would result 
in an optimal alignment but also make the problem NP-
complete, which is computationally intractable. Instead, 
GESAMT attempts to repair the deficiency of the chosen 
approach by further refining the alignments in the largest 
clusters. After refinement, the alignment with the highest 
Q-score is reported as the final result.
	 The refinement procedure attempts to choose a 
superposition matrix T0 that would increase the Q-score 
of an alignment. This is achieved by the iterative addi-
tion of new atom pairs into the alignment, but also by 
the removal of atom pairs if they render an increase in 
Q-score impossible, and recalculation of T0 after each it-
eration. Conceptually, this task is similar to conventional 
sequence alignment, which is solved rather efficiently 
with the Smith-Waterman algorithm (Smith & Waterman 
1981). This algorithm places the elements of the two se-
quences in an optimal correspondence that minimizes the 
difference between individual elements (such as residue 
types). In a structural context, the difference between the 
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individual backbone atoms i and j is a function of their 
space separation w w dij ij= ( )  at a given superposition ma-
trix T0. Firstly, T0  is calculated using the initial set of cor-
responding atom pairs in the chosen cluster. Then, a new 
set of pairwise atom relations is calculated by the Smith-
Waterman algorithm with the appropriately chosen func-
tion w dij( ) . The new set of atom pairs may be used for 
the calculation of the corrected superposition matrix T0 , 
and this process is iterated until the results cease to change 
(Gerstein & Levitt 1996).
	 Using atomic separations dij as the sole measure of 
difference for the Smith-Waterman algorithm would result 
in the optimization of a purely distance-related score. For 
example, the following function:

(1) w d d dij ij( ) max( , )= −0 0
2 2

will produce alignments with minimal rmsd for pairs sepa-
rated by distances less than d0 angstroms. In general, rmsd 
is not the most convenient score for structural alignments. 
With this score, the best alignments (zero rmsd) may be 
always achieved with the superposition of just one or two 
C-alpha atoms from each chain. SSM’s Q-score (Krissinel 
& Henrick 2004):

(2) Q
N

rmsd R N N
align

A B

=
+

2

0
21( ( / ) )

was found to be a far better measure, because it takes both 
r.m.s.d. and the number of aligned atoms Nalign into ac-
count. In Eq. (2), R0 is an empirical parameter (set to 3 
Å), which balances the effects of the alignment length and 
r.m.s.d. on the score. Chain lengths NA and NB are added 
into the denominator in order to generate a score in the 
region of 0 (completely dissimilar structures) to 1 (identi-
cal structures).
	 The Smith-Waterman algorithm utilizes elemental 
scores wij to measure the effect of putting the ith and jth 
elements of the two sequences into correspondence. Since 
the Q-score cannot be factored into a sum of individual ef-
fects wij, it cannot be used directly in the Smith-Waterman 
algorithm. In order to overcome this difficulty, we repre-
sent the Q-score in the following form:

(3) Q
N
N N

d
R rmsd

align

A B

ij
ij

= −
+









∑ 1

2

0
2 2    

where summation is made over all aligned pairs. Assum-
ing that Nalign and rmsd do not change significantly from 
iteration to iteration, the difference function w(dij) may be 
written as  

(4) w d
d

R rmsdij
ij( ) = −

+
1

2

0
2 2

such that Q N N
w d

A B
ijij

= ∑1 ( ) . In Eq. (4), rmsd is calculat-
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Figure 1. Schematic of structure alignment process in GESAMT. The left part of Figure 1 represents the fragment similarity 
matrix for the given chains A and B. Every short section in the matrix represents an SFS. SFSs with similar transformation matrices 
are collected into clusters, which after further refinement are brought to the common superposition matrix T0 .



ed on every iteration using the superposition matrix T0 
and the Nalign atom pairs produced by the Smith-Water-
man algorithm in the previous iteration. As described in 
the next section, the refinement procedure converges to 
alignments with higher, when compared to the SSM al-
gorithm, Q-scores.
	 GESAMT is implemented as a C++ application 
and is operationally identical to SUPERPOSE from the 
CCP4 Software Suite. As any other application of its 
kind, GESAMT has a few semi-empiric parameters, such 
as thresholds for Q-score variations in the clustering pro-
cedure and parameters for keeping the number of clusters 
on a reasonable level. These parameters control the ex-

tensiveness of the search and balance the achieved qual-
ity (as measured by the Q-score) and computation time. 
For simplicity, these parameters have been combined 
in two sets, called Normal and High mode. In Normal 
mode, a reasonable balance between quality and speed is 
negotiated, while in High mode, quality considerations 
are ultimately preferred. GESAMT is released by CCP4 
(Winn et al. 2011) starting from version 6.3.

Results and Discussion

The assessment of structure alignment algorithms pre-
sents a problem on its own (see, e.g.,  Kolodny et al. 
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Figure 2. Discrimination properties of selected structure alignment algorithms. FATCAT-Rigid, FATCAT-Flexible (Ye & 
Godzik 2003), SSM (Krissinel & Henrick 2004) and GESAMT (present study) are compared. N(S) gives the probability of getting a 
score higher than S for dissimilar structures, P(S) corresponds to the probability of getting a score lower than S for similar structures. 
For FATCAT, S corresponds to the “raw” scores, contained in the FATCAT benchmark set. For SSM and GESAMT, the Q-score 
was used. Different-color curves correspond to similarity detected at various levels of SCOP hierarchy, as indicated in the figure.



2005, Mayr et al. 2007). This is partially due to differences 
in the score functions used by the different algorithms, but 
also because of the fact that any assessment procedure re-
quires benchmark sets of “similar” and “dissimilar” struc-
ture pairs, which cannot be comprehensive and may be 
inadvertently biased. In order to minimize the chances of 
having a biased result, we have chosen to use a benchmark 
set from elsewhere and provide score-based comparisons 
only with the SSM algorithm, which optimizes the same 
Q-score as GESAMT. Neither SSM nor GESAMT were 
calibrated (trained) on this data set.
	 The benchmark set was produced by the authors of 
the FATCAT structure alignment software (Ye & Godzik 
2003). It consists of 6233 similar and 8769 dissimilar pairs 
of protein structures, where similarity and dissimilarity 

may be identified on all 4 levels of SCOP hierarchy (Mur-
zin et al. 1995): family, superfamily, fold and class. This 
set was successfully used in other studies (see, e.g., Fried-
berg et al. 2007) and is available from http://fatcat.burn-
ham.org/fatcatbench/benchmark/benchvalue.txt together 
with FATCAT’s figures of performance, which are used in 
this study for reference.
	 First, consider the discrimination properties of the 
structure alignment algorithms. Usually, structure similar-
ity is measured by a continuous score S. Introduce function  
P(S) as the probability of obtaining an alignment of similar 
structures with a score lower than S. Likewise, let func-
tion N(S) be the probability of getting a score higher than 
S in the alignment of dissimilar structures. The score S0, 
such that E N S P S0 0 0= =( ) ( ) , is the optimal discrimina-
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Figure 3. Coverage vs. Error plots (Brenner et al. 1998) for selected structure alignment algorithms. FATCAT-Rigid (green 
lines), FATCAT-Flexible (magenta lines), SSM (blue lines) and GESAMT in Normal (red lines) and High (black lines) mode are 
compared. The optimal discrimination scores from Table 2 were used as similarity thresholds. Different plots correspond to similar-
ity detection at various levels of SCOP hierarchy, as indicated in the figure.



tion score, and the lower the discrimination error E0, the 
higher the discrimination power of the algorithm.
	

Family Superfamily Fold Class
FATCAT-Rigid 0.19 0.20 0.19 0.24
FATCAT-Flexible 0.21 0.22 0.21 0.26
SSM 0.25 0.25 0.24 0.28
GESAMT 0.12 0.19 0.12 0.19

Table 1. Discrimination errors E0 for selected structure 
alignment algorithms, corresponding to the intersection 
points in Figure 2.

	 Figure 2 shows the discrimination properties of 
FATCAT-Rigid, FATCAT_Flexible, SSM and GESAMT. 
Predictably, all N(S) curves are monotonically decreas-
ing and P(S) monotonically increasing. The intersection 
point S0, as well as the value of the discrimination error 
E0, appear to be different for all algorithms and similarity 
levels (which correspond to the levels of SCOP hierar-
chy). An ideal discrimination between similar and dis-
similar structures would occur in case of E0 0= , which 
is not observed in Figure 2. It is therefore obvious that 
neither FATCAT’s “raw” scores nor the Q-score can un-
ambiguously indicate structure similarity. Table 1 sug-
gests that GESAMT provides the best similarity detec-
tion in all cases, while SSM’s performance is the worst. 
As the similarity detection is performed using the same 
score in both SSM and GESAMT, the forementioned re-
sult indicates a considerable advantage of the latter algo-
rithm. More specifically, in the Family and Fold similar-

ity classes, GESAMT outperforms other algorithms by a 
substantial margin, while in the case of Superfamilies, it 
offers only a marginal improvement, when compared to 
FATCAT-Rigid. 

	 Discrimination between similar and dissimilar 
structures is used in a more rigorous, score-independent, 
test on sensitivity and specificity. A good structure align-
ment algorithm is both sensitive and specific. The algo-
rithm is said to be sensitive if it tends not to identify simi-
lar structures as dissimilar. The sensitivity is measured by 
the True Positive Rate:

(5) SNS
TP

TP FN
=

+

where TP stands for the probability to identify similar 
structures as similar (True Positives), and FN is the prob-
ability to identify similar structures as dissimilar (False 
Negatives). Similarly, a specific algorithm is one with a 
high True Negative Rate:

(6) SPC
TN

TN FP
=

+

where TN and FP are probabilities to identify dissimilar 
structures as dissimilar and similar, respectively (True 
Negatives and False Positives).
	 In order to evaluate the sensitivity and specificity 
of an algorithm on a wide range of scores, the Coverage 
vs. Error plot is used (Brenner et al. 1998). All align-
ments are sorted by decreasing score, and the values of 
TP, TN, FP and FN are calculated as functions of the sort 
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Figure 4. Comparison of Q-scores produced by SSM and GESAMT in Normal (left panel) and High (right panel) mode. 
Each dot represents a pair of alignments, produced by SSM and GESAMT for the same protein pair from the benchmark set used.



index n. E.g., TP(n) is the number of true positives de-
tected in alignments 1 to n. Finally, SNS(n) called Cover-
age, and SPC(n) are calculated. However, for presentation 
purposes, the False Positive Rate: FPR n SPC n( ) ( )= −1   
is used instead (Brenner et al. 1998). Lower and longer 
FPR(n) curves indicate a more specific and sensitive simi-
larity detector.

Family Superfamily Fold Class

FATCAT-Rigid 161 117 101 88

FATCAT-Flexible 162 121 105 93

SSM 0.070 0.047 0.037 0.031

GESAMT 0.262 0.134 0.100 0.078

Table 2. Optimal discrimination scores corresponding to 
data in Figure 2 and Table 1.

	 Figure 3 presents the Coverage vs Error plots for 
selected algorithms. The curves were calculated using the 
optimal discrimination scores from Figure 2 (listed in Ta-
ble 2) and, therefore, reflect the best possible results for 
each algorithm on the benchmark set used. As seen in the 
figure, SSM appears to be generally more specific at lower 
and medium coverages comparing to FATCAT, but is mar-
ginally outperformed by the latter at high coverages i.e. 
SSM is a slightly more specific tool. This may be partially 
explained by the fact that SSM was designed and tuned for 
fast database screening, which is based on the aggressive 
removal of non-promising (True Negative) hits. The most 

significant difference between SSM and FATCAT is seen 
on the level of SCOP families, which means that SSM is 
better at a finer discrimination of generally similar struc-
tures.
	 GESAMT is an absolute winner in this series of 
tests. On Family, Fold and Class similarity levels, GESA-
MT provides considerably and consistently more specific 
and sensitive results (with the exception of a narrow region 
of coverages between 0.6 and 0.15 on Family level, where 
GESAMT is as good as SSM). In selected coverages, GE-
SAMT gives up to 10 times fewer false positives, when 
compared to SSM and FATCAT. On average, GESAMT 
results appear to be 3 to 5 times more accurate. In the case 
of fold-level and class-level similarity detection, GESA-
MT shows a stunning difference from the other algorithms 
compared. This result suggests that GESAMT may be use-
ful for various applications in the structural bioinformat-
ics domain, where structural similarity is used to infer on 
homology or functional properties of structures. As seen in 
Figure 3, there is little difference in the results produced by 
GESAMT in the Normal and High modes. Therefore, for 
the majority of practical applications, the Normal mode is 
an appropriate choice.
	 Curiously, all algorithms perform nearly equally 
in the Superfamily similarity level, where they reach a 
relatively high number of false positives at low coverages. 
It is difficult to give any definite reason for this behavior. 
It is not very likely that this is caused by particular design 
or implementation features in the 4 different methods. This 
could rather be an artifact originating from the composi-
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Figure 5. Comparison of computation times used by SSM and GESAMT in Normal (left panel) and High (right panel)   
modes for individual alignments. Each dot represents a pair of alignments, produced by SSM and GESAMT for the same protein 
pair from the benchmark set used. Total computation time used by SSM is 4,746 secs, GESAMT in Normal mode: 1,107 secs, GE-
SAMT in High mode: 12,167 secs.



tion of the benchmark set. Another possible explanation 
is that SCOP classification could be less perfect on the 
level of superfamilies. One can note in this regard that 
the classification of SCOP superfamilies is defined by 
a probable common evolutionary origin (Murzin et al. 
1995), and could thus be less related to structural fea-
tures, compared to other levels of SCOP hierarchy.
	 It is interesting to perform a direct comparison 
of SSM and GESAMT, which is facilitated by the fact 
that they are based on the optimization of the same score. 
As seen in Figure 4, GESAMT produces considerably 
higher Q-scores. On average, Q-scores from GESAMT 
are 2-3 times higher than SSM’s. This means that GE-
SAMT finds longer alignments at lower rmsd. In many 
cases, GESAMT produces scores that are 10 and even 
100 times higher. These cases correspond to SSM fail-
ures. As seen in the figure, only a small percentage of 
GESAMT’s alignments in Normal mode are worse than 
the ones produced by SSM. In very few instances, GE-
SAMT fails (i.e. produces Q-scores that are 5-10 times 
lower than SSM’s).
	 In High mode, less than 10 of GESAMT’s align-
ments have superficially lower than SSM’s Q-scores, 
while approximately 95% percent of the other results 
are very similar or identical to those obtained in Normal 
mode. As mentioned before, higher Q-scores in High 
mode are achieved by a wider exploration of the search 
space, which involves additional computational costs. 
Figure 5 presents a comparison of the computation time 
used by SSM and GESAMT for producing individual 
alignments. As seen in the figure, in the majority of cases 

GESAMT is faster than SSM in Normal mode and slower 
in High mode. The gross computation times suggest that, 
on average, SSM takes 0.3 secs per alignment while GE-
SAMT in Normal mode is 4.3 times faster and in High 
mode approximately 2.5 times slower. These results indi-
cate that a marginal (in less than 5% of cases) quality de-
crease in the Normal mode is accompanied by a 10-fold 
gain in speed. These figures justify the choice of internal 
parameters configured to the Normal mode and leave the 
use of the High mode to special (doubtful and difficult) 
cases.
	 It is worth noting here, that this test is not truly 
indicative of SSM’s speed. As its essential feature, SSM 
allows for efficient precompilation of structural data, 
which is then used for fast database screening. With this 
precompilation in force, SSM’s speed is significantly (20-
30 times) faster than indicated in Figure 2. This particular 
feature of the SSM algorithm cannot be used for pairwise 
comparisons and, therefore, is not engaged in CCP4’s 
SUPERPOSE. However, precompilation of structural 
data is an essential feature of the SSM web-server run-
ning at the European Bioinformatics Institute (http://
www.ebi.ac.uk/pdbe/ssm). In addition, SSM makes use 
of controlled complexity, which allows for a further 20-
30 times speed-up by pruning the search tree so that only 
alignments with higher than an a priori specified similar-
ity level are looked at.
	 The structure size is one of the major factors 
affecting the computation times of structure alignment 
algorithms. Figure 6 shows the correlation between the 
computation time and the product of chain lengths for 
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Figure 6. Correlation between computation time and product of chain lengths for SSM (red dots) and GESAMT (black dots). 
Each dot represents a pair of alignments, produced by SSM and GESAMT for the same protein pair from the benchmark set used.



SSM and GESAMT. As seen in the figure, in the Normal 
mode, GESAMT outperforms SSM in cases of medium 
to small-sized structures (100-200 residues) and shows a 
comparable performance in the case of larger structures 
(more than 400 residues). In the High mode, GESAMT 
is considerably slower than SSM for larger structures. 
The theoretical complexity of GESAMT is estimated as 
O N NA B( )× , which is generally confirmed by data shown 
in Figure 6. A linear correlation between the measured 
CPU time and the product of chain lengths is seen rather 
clearly in the High mode, while the Normal mode shows 
a higher extent of variation from the estimate. This is ex-
plained by the previously mentioned fact that GESAMT 
utilizes much more liberty in pruning the search tree when 
running in the Normal mode, subject to the particular situ-
ation and structural features. This often results in shorter 
than theoretical computation times. On the contrary, in 
the High mode, most of the search space is forcefully ex-
plored, which results in a narrower configuration of black 
dots, as if they were pulled up to the top limit.
	 In its current form, GESAMT solves the very ba-
sic problem of a rigid-body alignment of linear structures. 
This is applicable in most practical situations. Yet, there 
are a few important cases where a rigid-body alignment 
does not provide an easy answer: alignment of structures 
with hinges, branches, loops and reverse inclusions and 
multiple alignments. Application of a rigid-body tech-
nique to a pair of structures with hinge motion between 
the domains results in the identification of a single domain 
pair that aligns with the highest score, while, typically, a 
researcher would like to have a complete list of the match-
ing domains. Branching and looping mainchains break the 
original assumption of linear structures, which makes re-
sults dependent on the indexing of monomeric residues. 
Sometimes, two structures may have a similar spatial ori-
entation of the larger construction units (e.g., secondary 
structure elements), but differ in the way these units are 
interconnected. This represents the case of reverse inclu-
sions which are not suitable for rigid-body aligners. A mul-
tiple alignment (MA) refers to the identification of com-
mon structural features in n>2 molecules (see Krissinel 
& Henrick 2005, Micheletti & Orland 2009, Shatsky et 
al. 2004). This technique allows one to draw higher-con-
fidence conclusions from comparative studies in structural 
bioinformatics. Also, MA is receiving an increasing inter-
est associated to the selection of models for molecular re-
placement in protein crystallography. In general, MA does 
not reduce to a set of pairwise alignments and requires 
simultaneous consideration of all the structures involved. 
This cannot therefore be achieved with GESAMT in its 
present form. However, based on the impressive results on 
the structure recognition rate that were demonstrated by 

GESAMT, it would be interesting to extend the algorithm 
to all or some of the tasks listed above. This would repre-
sent a promising direction for future developments.

Conclusion

We present GESAMT, a new algorithm for the structural 
alignment of polypeptide chains. The initial motivation for 
this development was to overcome the limitations of SSM, 
a primary structure alignment tool in the CCP4 Program 
Suite, without losing its strengths. SSM only works with 
structures that have at least a few secondary structure ele-
ments and is sensitive to the completeness of data. This 
limits SSM’s applicability on the intermediate stages of 
the structure solution process, when a secondary struc-
ture pattern may still be undefined and the model may be 
partially incomplete (fragmented). GESAMT is free from 
these limitations. In this study, we applied GESAMT only 
to protein structures. However, it is equally applicable to 
any ordered sets of points in 3D space; for example, rep-
resenting a backbone of RNA chains. Likewise, we only 
used C-alpha based fragments but the method allows for 
a straightforward generalization on fragments of an ar-
bitrary level of details, e.g. those including C-beta or C-
gamma atoms.
	 The assessment of the new algorithm has con-
firmed that it is at least as fast and efficient as the (pair-
wise) SSM. What came out as a surprise is GESAMT’s 
enhanced ability to discriminate between similar and dis-
similar structures. Compared to SSM, GESAMT makes up 
to 10 times fewer errors at the same coverages and produc-
es 5-10 times higher Q-scores. We also confirmed these 
findings in respect to another popular algorithm, FATCAT. 
A comprehensive comparative study with numerous other 
algorithms is beyond the scope of this paper but an en-
thusiastic reader may get the general points of reference 
from the comparisons made in this paper and from simi-
lar studies that involve SSM and FATCAT elsewhere (see 
Kolodny et al. 2005). The enhanced ability to discriminate 
between structure families, folds and classes makes GE-
SAMT a recommended substitution to SSM in bioinfor-
matics-related studies.
	 GESAMT is as fast as SSM at pairwise compari-
sons but is not competitive at database screening, where 
SSM is 10 to 100 times faster. This is due to its ability 
to filter out non-promising matches and efficiently prune 
whole branches of the search trees in early stages, with-
out their exhaustive exploration. Also, GESAMT does not 
compute multiple alignments, for which there is a growing 
demand from the area of ensemble modeling for molecu-
lar replacement. Addressing these problems represents the 
future direction of GESAMT development.
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